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Wheat (Triticum spp.) is a crucial staple crop globally, contributing significantly to the caloric intake in many
countries, including India. Traditional breeding methods have played a vital role in wheat improvement;
however, they face limitations in addressing the complex challenges posed by biotic and abiotic stresses
and the need for increased productivity. Genomic selection (GS) has emerged as a powerful tool to enhance
wheat breeding by leveraging genomic information to predict breeding values with greater accuracy and
efficiency. This review explores the application of GS in wheat improvement, highlighting its advantages,
challenges, and future perspectives. Linear models like G-BLUP and Bayesian methods are extensively used
in GS, offering simplicity and robustness. In contrast, non-linear models, including Random Forests, Support
Vector Machines, and Artificial Neural Networks, capture complex genetic architectures, making them suitable
for traits with intricate interactions. Despite its promise, GS faces challenges such as the need for large
training populations, high costs, and integration with traditional breeding programs. Future directions for
GS in wheat breeding include the development of climate-resilient varieties, the integration of artificial
intelligence and machine learning to enhance prediction accuracy, and the combination of GS with precision
agriculture for sustainable crop management. The continued advancement and adoption of GS in wheat
breeding hold the potential to address global food security challenges by developing high-yielding and
resilient wheat varieties.
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ABSTRACT

Introduction
Wheat (Triticum spp.) is an important staple cereal

in many countries across the globe including India, which
contributes approximately 20% of calories to the dietary
requirement. Advances in plant breeding tools and
techniques, mostly through conventional methods and
agronomic approaches during the era of the green
revolution and thereafter have contributed greatly to the
annual productivity gain in wheat. The incorporation of
dwarfing genes Rht1 and Rht2 in wheat cultivars by
Borlaug and his team in the early 1960s was one of the
most significant achievements to usher in the green
revolution (Rajaram and Braun 2008). However, demand
for wheat-based food products is increasing as the world’s
population grows, per capita income rises, and food
consumption patterns become more diverse. Increasing

the rate of genetic gain through modern breeding
technologies is essential for food and nutritional security.

Wheat production faces significant challenges due
to biotic and abiotic stresses, climate change, and the
need for increased productivity to meet global demand.
Traditional breeding methods have been instrumental in
wheat improvement, but they are often time-consuming
and limited by the complexity of traits such as yield and
disease resistance. Genomic selection (GS) has emerged
as a powerful tool that leverages genomic information to
predict the performance of breeding lines, offering a more
efficient and precise approach to wheat improvement
(Heffner et al., 2009). Genomic selection (GS) is one
such proven technology in animal breeding and has
recently been incorporated into plant breeding programs,
especially in the large-scale private sector. GS is a
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promising approach for the rapid selection of superior
genotypes and accelerating the breeding cycle. Traditional
wheat breeding and yield improvement efforts are
inadequate to cope with the 2% annual increment rate in
the global population and feed an estimated ten billion
population by 2050 (Hickey et al., 2017). Traditional
breeding methodologies rely on evaluating phenotypic
merit along with pedigree information (Rasmusson and
Phillips 1997) prompting lower accuracy and efficiency
for trait selections that are modulated by prevailing
environmental conditions (Heffner et al., 2009) and
hindering precision in selection. To overcome these
challenges and to sustain production, modification and up
gradation of conventional breeding techniques are
prerequisites for meeting the production to feed the
increasing population. Genomic selection is a form of
MAS that simultaneously estimates all locus, haplotype,
or marker effects across the entire genome to calculate
genomic estimated breeding values (GEBVs; Meuwissen
et al., 2001). This approach contrasts greatly with
traditional MAS because there is not a defined subset of
significant markers used for selection. Instead, GS
analyses jointly all markers in a population attempting to
explain the total genetic variance with dense genome-
wide marker coverage through summing marker effects
to predict the breeding value of individuals (Meuwissen
et al., 2001).

With accurate genotypic and phenotypic information,
genomic selection (GS) can facilitate the rapid selection
and identification of desired genotypes by utilizing
genome-wide distributed markers to estimate the effects
of all loci and predict the genomic estimated breeding
values (GEBV) to achieve more reliable selection. Linear
models like G-BLUP and machine learning algorithms
are used in understanding the complex patterns of data
to make correct decisions. These prediction models can
be effectively utilized in exploiting positive G×E
interactions. Modelling multi-trait and multi-environment
is a prerequisite for improving the prediction accuracy
and performance of newly developed lines. The main
advantages of GS over phenotype-based selection
breeding are significant as it can facilitate accuracy in
the selection, breeding time, and phenotyping costs in
developing a variety, especially for complex traits with
low heritability (Heffner et al., 2009; Crossa et al., 2017).

GS schemes are being implemented to attain genetic
gains of economically important and low heritable traits
which are otherwise very difficult to improve genetically
by using conventional breeding principles. Incorporation
and effective use of GS in the breeding program depends
upon several factors such as breeding method, genetic

architecture and heritability number of targeted traits,
statistical models, availability of genotyping and
phenotyping facilities, and the budget of the breeding
program (Heffner et al., 2009). Effective GS strategy
utilizes an extensively genotyped and phenotyped
population called a training population, which is used to
optimize the statistical prediction model, with the help of
which breeding values of the un-phenotyped population
called as a breeding population are calculated called as
genomic estimated breeding value (GEBV) purely based
on genotyping data, which results in cutting down the
breeding cycle and eliminating unnecessary multi-location
and multi-environmental phenotyping trials.

The accuracy of these models depends on several
factors, including the size and diversity of the training
population, the density of markers used, and the genetic
architecture of the trait being predicted. For complex traits
like yield, which are influenced by many small-effect
genes, dense marker coverage is essential to capture the
genetic variance accurately. Recent advancements in
high-throughput genotyping technologies, such as
genotyping-by-sequencing (GBS) and SNP arrays, have
made it feasible to generate large amounts of genotypic
data, thus improving the robustness of genomic prediction
models (Wang et al., 2021).
Pipeline for genomic selection for wheat improvement

The implementation of GS in wheat breeding
programs involves several critical steps. The selection of
an appropriate training population is important for the
success of genomic selection. The training population
should be genetically diverse and representative of the
breeding population to which the genomic prediction model
will be applied. A well-chosen training population ensures
that the model can capture the genetic variation present in
the target population, leading to more accurate predictions.

In wheat, first step in genomic selection is to develop
a training population, which is a diverse set of individuals
for which both phenotypic data (traits of interest) and
genotypic data (genetic markers) are available (Fig. 1).

Fig. 1: Pipeline involved in the genomic selection.



The training population must be representative of the
breeding population to ensure that the genomic prediction
models are applicable (Jannink, et al., 2010). The size
and composition of the training population are crucial, as
they influence the accuracy of the prediction models.
Ideally, the training population should cover a wide range
of genetic diversity to capture the different genetic
backgrounds present in the breeding population (Crossa
et al., 2017).The next step involves developing a
statistical model to predict the genetic potential of
individuals based on their marker data. Various models
can be used for genomic prediction.

Genomic selection (GS) models can be broadly
classified into two main categories which are linear
models and non-linear models. Linear models assume
that the relationship between the markers and the trait of
interest is linear. These models are often preferred for
their simplicity, interpretability, and efficiency in handling
large datasets. One among these are Best Linear
Unbiased Prediction (BLUP) and its genomic variant (G-
BLUP) are standard models in GS. G-BLUP uses
genome-wide markers to estimate breeding values, if all
markers contribute equally to genetic variance. The model
assumes a normal distribution of marker effects, making
it suitable for traits with many small-effect loci
(VanRaden et al., 2008). The advantages of this model
are Simple and robust, with balanced computational
efficiency and widely used in both animal and plant
breeding due to its reliability. The major limitation is it
assumes equal contribution of all markers, which may
not be suitable for traits controlled by major genes
(Meuwissen et al., 2001). Various types of statistical
model used in Genomic selection illustrated in Fig. 2.

Additionally, the Bayesian Ridge Regression (BRR)
is a linear model that applies a Bayesian approach to the
estimation of marker effects. Unlike G-BLUP, BRR
allows for different variances for different markers. A
model assigns normal priors to marker effects, which
are then used to estimate the genomic breeding values.

y=X+Zg+e
Where, y is the vector of phenotypic values, X is the

matrix of fixed effects, â is the vector of fixed effects, Z
is the matrix of marker genotypes, g is the vector of
random genetic effects, and õ is the vector of random
residual effects (Meuwissen et al., 2001). The major
advantages were more flexible than G-BLUP, allowing
for marker-specific variances and Suitable for traits with
varying effect sizes among markers. The key limitation
was computationally more demanding than G-BLUP and
it requires careful tuning of hyperparameters (Habierde
et al., 2011)

Bayesian LASSO is a linear model that applies a
Laplace prior to the marker effects. This prior induces a
penalty that shrinks the effects of markers with small
contributions, effectively performing variable selection.
It is particularly useful for traits controlled by a few large-
effect loci. The advantages of Bayesian LASSO are
automatic variable selection reduces noise from markers
with negligible effects and well-suited for traits with sparse
genetic architecture. The limitations consist of
computationally intensive, especially for large datasets
and the choice of the shrinkage parameterë significantly
influences the results (Gianola et al., 2013).

Bayesian models incorporate prior knowledge and
provide a probabilistic framework for estimating marker
effects. Common Bayesian methods include BayesA,
BayesB, and BayesC, each differing in their assumptions
about marker effect distributions (Gianola et al., 2008).
These were encompassing a family of GS models that
differ in their assumptions about the distribution of marker
effects. Bayes A assumes different variances for each
marker, Bayes B assumes a subset of markers have non-
zero effects, and Bayes C incorporates a probability
that a marker has a non-zero effect. These models are
particularly useful for traits with a mix of large and small-
effect loci and the advantages were flexible and can
accommodate different genetic architectures. It allows
the incorporation of prior biological knowledge into the
model. The limitations where it is computationally
intensive, especially for large datasets. The choice of
prior distributions and hyperparameters can be complex
(Meuwissen et al., 2001; Habier et al., 2011).

Non-linear models capture complex interactions and
non-linear relationships between markers and traits.
These models are particularly useful for traits with
intricate genetic architectures. It includes Random Forest
(RF) model it is a machine learning model that creates
an ensemble of decision trees. Each tree is built on a
random subset of markers, and the final prediction is made
by averaging the predictions of all trees. RF can capture
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Fig. 2: various types of statistical model used in Genomic
selection.



complex interactions between markers, making it suitable
for traits with non-linear genetic architecture.It has
capable of handling non-linear relationships and
interactions between markers and often provides higher
prediction accuracy for complex traits these were the
advantages of RF. The major limitations are it requires
large training datasets to achieve high accuracy and
interpretation of the results can be challenging compared
to linear models (Heslot et al., 2012).

Support Vector Machines (SVM) are supervised
learning models used for classification and regression
tasks. In the context of GS, SVMs can handle high-
dimensional genomic data by finding the optimal
hyperplane that separates data points (genotypes) based
on their associated phenotypic values. SVMs utilize kernel
functions to transform input data into higher-dimensional
spaces where linear separation is possible, effectively
capturing non-linear relationships between markers and
traits. It has some advantages like which is effective with
high-dimensional data, suitable for datasets where the
number of markers exceeds the number of samples (Long
et al., 2011). It has good flexibility and robustness.
Similarly, it has disadvantages also like computationally
Intensive and training can be slow with large datasets.
Performance is sensitive to the choice of kernel and
hyperparameters and it is requiring extensive cross-
validation. The obtained results can be difficult to interpret
biologically.

Artificial Neural Networks (ANN) are computational
models inspired by the human brain’s network of neurons.
ANNs consist of interconnected nodes (neurons)
organized in layers that process input data to predict
outputs. In GS, ANNs can model complex, non-linear
relationships between genomic markers and phenotypic
traits by learning from large datasets through training
processes. The advantages are non-linear models are
highly capable of capturing complex and non-linear
interactions among genetic markers, making them
particularly suitable for traits governed by intricate genetic
architectures (González-Camacho et al., 2012). The
adaptability of these models allows the network
architecture, including depth and width, to be adjusted
according to the complexity of the data, enabling better
modeling of diverse traits. Additionally, these models often
achieve high predictive accuracy, particularly when
applied to large and diverse datasets. non-linear models
have significant limitations, including the need for large
training datasets to prevent overfitting and ensure the
model’s generalizability. The computational cost of training
deep networks is another concern, as it requires substantial
computational resources.

Genomic Estimated Breeding Values (GEBVs) are
calculated for each individual in the breeding population
using the developed statistical models. GEBVs represent
the sum of the estimated effects of all markers across
the genome, providing a prediction of an individual’s
genetic potential (VanRaden et al., 2008).

Cross-validation is a crucial step to evaluate the
accuracy and reliability of the genomic prediction model.
In cross-validation, the training population is divided into
subsets, and the model is trained on a portion of the data
(training set) and tested on the remaining data (validation
set). This process is repeated several times, and the
prediction accuracy is assessed by correlating the
predicted GEBVs with the observed phenotypic values.
The most common approach is k-fold cross-validation,
where the data is split into k subsets, and the model is
trained and tested k times, each time using a different
subset as the validation set (Wimmer et al., 2013). Five-
fold cross validation to evaluate the model tabulated in
Table 1. Finally, individuals with the highest GEBVs are
selected for further breeding. The goal is to choose
individuals that carry the best genetic potential for the
traits of interest, ensuring that these favourable traits are
passed on to the next generation (Heffner et al., 2009).
Challenges and Limitations in Genomic Selection
for Wheat Improvement

One of the primary challenges in genomic selection
is the genetic diversity and population structure of the
training populations. The accuracy of genomic selection
models largely depends on the relatedness between the
training population and the selection candidates. In wheat,
a crop with a complex genome and significant genetic
diversity across different varieties and breeding lines,
population structure can introduce biases into the model.
This bias may result in overestimation or underestimation
of genetic values, ultimately affecting the accuracy of
genomic estimated breeding values (GEBVs). Ensuring
that the training population is representative of the breeding
population is essential yet challenging due to the extensive
genetic variation present in wheat. This challenge is

Table 1: Five-fold cross validation to evaluate the model.
Five-fold cross Subset Subset Subset Subset Subset

validation 1 2 3 4 5
Fold Training Training Training Training Validation

1 set set set set set
Fold Training Training Training Validation Validation

2 set set set set set
Fold Training Training Validation Training Validation

3 set set set set set
Fold Training Validation Training Training Validation

4 set set set set set
Fold Validation Training Training Training Validation

5 set set set set set
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further compounded when breeding programs aim to
combine diverse traits, such as stress tolerance and yield,
which may have different genetic bases. Strategies such
as using multi-environment trials and combining datasets
across populations can help mitigate these issues, but they
are resource-intensive and require careful consideration
of population structure during model development (Crossa
et al., 2017; Habier et al., 2007).

The implementation of genomic selection in wheat
breeding programs demands substantial financial and
logistical resources. High-throughput genotyping, which
is essential for accurate marker-assisted selection,
remains costly, particularly for large populations.
Additionally, the development of reliable training
populations and the subsequent phenotyping efforts to
build predictive models require significant investments in
time and resources. These requirements can be a barrier
for smaller breeding programs or those in developing
regions where funding and infrastructure may be limited.
The costs associated with genomic selection can also
limit the number of traits that can be selected
simultaneously, as resources must be allocated to
genotyping, model development, and validation for each
trait. While advances in genotyping technologies and data
analysis methods continue to reduce costs, the financial
and resource barriers remain a significant limitation for
the widespread adoption of genomic selection in wheat
breeding (Hickey et al., 2014; Heffner et al., 2009).

Integrating genomic selection into existing breeding
programs poses several challenges, particularly in terms
of aligning new methods with traditional selection
approaches. Breeders must balance the use of genomic
selection with conventional phenotypic selection methods,
especially in the early stages of breeding where phenotypic
data is sparse or unreliable. Moreover, there is a need to
adapt breeding pipelines to incorporate genomic data
effectively, which may involve retraining personnel,
updating software and computational infrastructure, and
redesigning selection strategies. The transition to genomic
selection also requires a cultural shift within breeding
programs, as breeders must become comfortable relying
on genomic data rather than traditional phenotypic
evaluations alone. This integration is further complicated
by the need to ensure that genomic selection models
remain robust and accurate across different environments
and over successive breeding cycles, which requires
ongoing evaluation and adjustment (Bernardo, 2008;
Jannink et al., 2010).
Future Perspectives and conclusions in Genomic
Selection for Wheat Improvement

Genomic selection (GS) holds immense potential for

accelerating the development of climate-resilient wheat
varieties by enabling the selection of traits associated
with stress tolerance at a genomic level. By incorporating
genomic data related to these traits, breeders can more
accurately predict which lines will perform well under
adverse conditions, thus speeding up the breeding process.
For instance, recent studies have shown that GS can
effectively select for traits such as drought tolerance by
utilizing genome-wide marker information to identify
resilient genotypes (Juliana et al., 2019; Sehgal et al.,
2020). This approach not only reduces the time needed
to develop new varieties but also increases the likelihood
of success in breeding for complex traits influenced by
multiple genes and environmental factors. The integration
of artificial intelligence (AI) and machine learning (ML)
techniques into GS is opening new avenues for more
accurate and efficient breeding programs. AI and ML
can be used to enhance the predictive power of GS models
by analysing large datasets, identifying complex patterns,
and optimizing selection strategies. These technologies
can also help in the identification of genomic regions
associated with specific traits, making it possible to target
breeding efforts more precisely. Moreover, AI-driven
models can continuously learn and improve as more data
becomes available, leading to increasingly accurate
predictions of breeding values over time (Spindel et al.,
2016). The use of AI and ML in GS is still in its early
stages, but it has the potential to revolutionize wheat
breeding by enabling more rapid and precise selection
decisions.

The combination of GS with precision agriculture
techniques offers a powerful approach to optimize wheat
production in a sustainable manner. Precision agriculture
involves the use of technologies such as remote sensing,
GPS, and data analytics to monitor and manage crop
growth at a fine scale. When integrated with GS, precision
agriculture can provide real-time phenotypic data that
enhances the accuracy of genomic predictions. This
integration allows breeders to account for environmental
variability more effectively and to select varieties that
are well-suited to specific growing conditions. For
example, precision agriculture can help identify micro-
environments within fields that are particularly challenging
for crop growth, and GS can be used to develop varieties
tailored to those conditions (Moser et al., 2019; Araus et
al., 2018). This synergy between GS and precision
agriculture could lead to more efficient use of resources,
reduced environmental impact, and higher yields.

Conclusion
Genomic selection is transforming wheat breeding

by enabling the selection of complex traits with greater
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accuracy and efficiency. However, challenges such as
genetic diversity, cost, and integration with existing
breeding programs must be addressed to fully realize its
potential. Future perspectives indicate a promising role
for GS in developing climate-resilient wheat varieties, with
AI and ML enhancing model precision, and precision
agriculture providing valuable phenotypic data for
improved selection accuracy. The future of wheat
improvement through genomic selection looks promising,
with the potential to meet global food security challenges
in the face of climate change. By leveraging advances in
genomics, AI, and precision agriculture, breeders can
develop wheat varieties that are not only higher yielding
but also more resilient to environmental stresses. Continued
research and investment in these areas will be crucial to
unlocking the full potential of genomic selection in wheat
improvement, ensuring that future generations have
access to sustainable and nutritious food sources.
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